Free Exponents Calculator - Simplify exponential expressions using algebraic rules step-by-step. Let me show you another one. How to Solve Exponents Download Article methods 1 Solving Basic Exponents 2 Adding, Subtracting and Multiplying Exponents 3 Solving Fractional Exponents Other Sections Related Articles References Article Summary Co-authored by David Jia Last Updated: February 27, 2023 Exponents are used when a number is multiplied by itself. In other words, when dividing exponential expressions with the same base, we write the result with the common base and subtract the exponents. Confidentiality is important in order to maintain trust between parties. Factor the expression: Factoring an expression involves identifying common factors among the terms and pulling them out of the expression using parentheses. Whether you are a student working on math assignments or a professional dealing with equations as part of your job, learning to simplify expressions is a valuable investment in your mathematical education and career. Our first expression has x^3y^8 / y^3x^7. This calculator will solve your problems. This is our answer simplified using positive exponents. To simplify your expression using the Simplify Calculator, type in your expression like 2(5x+4)-3x. Simplify expression calculator synthetic division calculator program multiply expressions with fractional exponents. Simplify Radical Expressions Calculator Solve y x n to simplified radical expressions or an integer including complex solutions Square Calculator x Calculate the squared value of integers, decimals and scientific e notation. In this section, we review rules of exponents first and then apply them to calculations involving very large or small numbers. Multiplying straight across, our final answer is 1/3x^2. Another useful result occurs if we relax the condition that [latex]m>n[/latex] in the quotient rule even further. Exponent Base & Type | What is a Positive Exponent? Math is the study of numbers, shapes, and patterns. Step 2: Click "Simplify" to get a simplified version of the entered expression. Use the properties of logarithms: If an expression contains logarithms, you can use the properties of logarithms to simplify it. This appears later in more advanced courses, but for now, we will consider the value to be undefined. Therefore, we move the denominator to the numerator with a positive exponent : Now, we only have positive exponents and we can apply the product of exponents rule to simplify: This section will provide several examples of how to simplify expressions with exponents including at least one problem about each property given above. This will give us (8p)^3q^4 in the bottom or denominator, but our top or numerator will stay the same. Click the blue arrow to submit. For any nonzero real number [latex]a[/latex], the zero exponent rule of exponents states that. . The simplify calculator will then show you the steps to, The power rule applies to exponents. Enrolling in a course lets you earn progress by passing quizzes and exams. It uses advanced algorithms to quickly and accurately combine like terms and eliminate unnecessary factors, giving you a clean, simplified expression that is much easier to work with. If there is a positive sign outside the bracket, then remove the bracket and write all the terms retaining their original signs. Step 2: Click the blue arrow to submit and see the result! Give it a try now and see how it can simplify your algebraic expressions and make your math problems a breeze! Do not simplify further. Try refreshing the page, or contact customer support. Get unlimited access to over 88,000 lessons. In other words, when multiplying exponential expressions with the same base, we write the result with the common base and add the exponents. Simplifying radical expressions (addition) Google Classroom About Transcript A worked example of simplifying an expression that is a sum of several radicals. Step 2: Now click the button "Solve" to get the result. Check out our online math support services! [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}=\left({x}^{2}\cdot {x}^{5}\right)\cdot {x}^{3}=\left({x}^{2+5}\right)\cdot {x}^{3}={x}^{7}\cdot {x}^{3}={x}^{7+3}={x}^{10}[/latex], [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}={x}^{2+5+3}={x}^{10}[/latex], [latex]\begin{array}\text{ }\frac{y^{9}}{y^{5}}\hfill&=\frac{y\cdot y\cdot y\cdot y\cdot y\cdot y\cdot y}{y\cdot y\cdot y\cdot y\cdot y} \\ \hfill&=\frac{\cancel{y}\cdot\cancel{y}\cdot\cancel{y}\cdot\cancel{y}\cdot\cancel{y}\cdot y\cdot y\cdot y\cdot y}{\cancel{y}\cdot\cancel{y}\cdot\cancel{y}\cdot\cancel{y}\cdot\cancel{y}} \\ \hfill& =\frac{y\cdot y\cdot y\cdot y}{1} \\ \hfill& =y^{4}\end{array}[/latex], [latex]\frac{{a}^{m}}{{a}^{n}}={a}^{m-n}[/latex], [latex]\frac{{y}^{9}}{{y}^{5}}={y}^{9 - 5}={y}^{4}[/latex]. Simplifying Expressions Calculator Exponents are supported on variables using the ^ (caret) symbol. Then it must be that ( 8 1 3) 3 = 8 3. Welcome to our step-by-step math solver! Each piece of the equation fits together to create a complete picture. Free simplify calculator - simplify algebraic expressions step-by-step. The rules for exponential expressions can be combined to simplify more complicated expressions. Use the product and quotient rules and the new definitions to simplify each expression. If you're having problems memorizing these properties, I suggest using flash cards. Explore the use of several properties used to simplify expressions with exponents, including the. Since we have x^3 divided by x^7, we subtract their exponents. If there is a negative sign outside the bracket, then remove the bracket and change the signs of all the terms written inside from + to -, and - to +. Perform the division by canceling common factors. It works with polynomials with more than one variable as well. If you're looking for help with your homework, our team of experts have you covered. Solve an equation, inequality or a system. Simplifying mathematical expressions implies rewriting the same algebraic statement compactly with no like terms. In this case, you multiply the exponents. To simplify algebraic expressions, follow the steps given below: Let us take an example for a better understanding. Exponents & Radicals Calculator. It helped me pass my exam and the test questions are very similar to the practice quizzes on Study.com. The calculator works for both numbers and expressions containing variables. Simplifying Expressions Calculator is a free online tool that displays the simplification of the given algebraic expression. Create your account, 13 chapters | Its like a teacher waved a magic wand and did the work for me. On the top, I have x^3y^8. Simplifying algebraic expressions refer to the process of reducing the expression to its lowest form. For example, you can combine 3x and 2x by adding them to get 3x + 2x = 5x. Simplifying Expressions Calculator is a free online tool that displays the simplification of the given algebraic expression. Here, there are two parentheses both having two unlike terms. Expressions can be rewritten using exponents to be simplified visually and mathematically. simplify, solve for, expand, factor, rationalize. For any real number [latex]a[/latex] and natural numbers [latex]m[/latex] and [latex]n[/latex], the product rule of exponents states that. For example, lets look at the following example. What would happen if [latex]m=n[/latex]? The maximum possible number of bits of information used to film a one-hour (3,600-second) digital film is then an extremely large number. Work on the task that is enjoyable to you Mathematics is the study of numbers, shapes, and patterns. The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Solve Now How to Simplify Exponents or Powers on the TI Multi-Step Equations with Fractions & Decimals | Solving Equations with Fractions. To simplify expressions, one must combine all like terms and solve all specified brackets, if any, until they are left with unlike terms that cannot be further reduced in the simplified expression. When you are working with complex equations, it can be easy to get lost in the details and lose track of what you are trying to solve. Recall that to simplify an expression means to rewrite it by combing terms or exponents; in other words, to write the expression more simply with fewer terms. Write answers with positive exponents. So, y/2 4x/1 = (y 4x)/2 = 4xy/2 = 2xy. Before you start making a list of calculations, however, you . simplify rational or radical expressions with our free step-by-step math First Law of Exponents If a and b are positive integers and x is a real number Deal with math question Math is a subject that often confuses students. Now, let us learn how to use the distributive property to simplify expressions with fractions. Free simplify calculator - simplify algebraic expressions step-by-step. Use the power rule to simplify each expression. Free simplify calculator - simplify algebraic expressions step-by-step. To simplify an algebraic expression means to rewrite it in a simpler form, without changing its value. It does not intend to find the value of an unknown quantity. To simplify the power of a product of two exponential expressions, we can use the power of a product rule of exponents, which breaks up the power of a product of factors into the product of the powers of the factors. Solve - Simplifying exponent expressions calculator Solve Simplify Factor Expand Graph GCF LCM Solve an equation, inequality or a system. To do this, we use the power rule of exponents. Example: Simplify the expression: 3/4x + y/2 (4x + 7). . If you want to improve your performance, you need to focus on your theoretical skills. Check out. Simplify 2n(n2+3n+4) Notice that the exponent of the product is the sum of the exponents of the terms. In this equation, you'd start by simplifying the part of the expression in parentheses: 24 - 20. Check out all of our online calculators here! simplify rational or radical expressions with our free step-by-step math calculator. And, y/2 7/1 = 7y/2. This website helped me pass! Step 1: Enter an exponential expression below which you want to simplify. Simplify each of the following products as much as possible using the power of a product rule. I can help you with any mathematic task you need help with. This tool is designed to take the frustration out of algebra by helping you to simplify and reduce your expressions to their simplest form. If we keep separating the terms and following the properties, we'll be fine. Whether you are a student working on a math assignment or a professional dealing with equations as part of your job, the Simplify Expression Calculator is an essential tool that can save you time and make solving equations much easier. When [latex]mn[/latex]. However, when simplifying expressions containing exponents, don't feel like you must work only with, or straight from, these rules. When we use rational exponents, we can apply the properties of exponents to simplify expressions. Psychological Research & Experimental Design, All Teacher Certification Test Prep Courses, Factoring with FOIL, Graphing Parabolas and Solving Quadratics. It is often simpler to work directly from the meaning of exponents. To use the Simplify Calculator, simply enter your expression into the input field and press the Calculate button. I can help you determine the answer to math problems. Doing math equations is a great way to keep your mind sharp and improve your problem-solving skills. Our final, simplified answer is y^5 / x^4. Example: 2x-1=y,2y+3=x New Example Keyboard Solve e i s c t l L Search Engine users found our website today by entering these keyword phrases : calculate equation by Improve your scholarly performance Algebra often involves simplifying expressions, but some expressions are more confusing to deal with than others. What are the steps for simplifying expressions. Solution: From the given statement, the expression formed is (k + 8)(16 - k). Otherwise, the difference [latex]m-n[/latex] could be zero or negative. Solution: Given, Daniel bought 5 pencils each for $x. You can have more time for your hobbies by making small changes to your daily routine. A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction barfrom numerator to denominator or vice versa. By simplifying it further, we will get 3x, which will be the final answer. MathHelp.com Simplifying Expressions Simplify a6 a5 The rules tell me to add the exponents. The rules for exponents may be combined to simplify expressions. We strive to deliver products of the highest quality to our customers. Simple Rules of Exponents Let's look at some of the basic rules of exponents. The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Use this, i was struggling with simplifying but this calculator has everything needed, this app was amazing and the best responses and the best Solutions I would refer this to everyone . Write answers with positive exponents. Free Exponents Calculator - Simplify exponential expressions using algebraic rules step-by-step. Simplify Expressions With Negative Exponents. Exponents Calculator Instructions for using FX Maths Pack. succeed. Groups Cheat . This time we have 5x^2y^9 / 15y^9x^4. Analytical geometry of two and three dimensions in hindi, How do you subtract fractions step by step, How to find the volume of a prism with fractions, How to improve function of pituitary gland, Math problem solving worksheets for grade 1, What do vampires do on halloween math worksheet answers, What is the order of differential equation given by dy/dx+4y=sinx. [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{\left({f}^{2}\right)}^{7}}{{\left({e}^{2}\right)}^{7}}\hfill \\ & =& \frac{{f}^{2\cdot 7}}{{e}^{2\cdot 7}}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]{\left(\frac{a}{b}\right)}^{n}=\frac{{a}^{n}}{{b}^{n}}[/latex], CC licensed content, Specific attribution, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface, [latex]\left(3a\right)^{7}\cdot\left(3a\right)^{10} [/latex], [latex]\left(\left(3a\right)^{7}\right)^{10} [/latex], [latex]\left(3a\right)^{7\cdot10} [/latex], [latex]{\left(a\cdot b\right)}^{n}={a}^{n}\cdot {b}^{n}[/latex], [latex]\left(-3\right)^{5}\cdot \left(-3\right)[/latex], [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}[/latex], [latex]{t}^{5}\cdot {t}^{3}={t}^{5+3}={t}^{8}[/latex], [latex]{\left(-3\right)}^{5}\cdot \left(-3\right)={\left(-3\right)}^{5}\cdot {\left(-3\right)}^{1}={\left(-3\right)}^{5+1}={\left(-3\right)}^{6}[/latex], [latex]{\left(\frac{2}{y}\right)}^{4}\cdot \left(\frac{2}{y}\right)[/latex], [latex]{t}^{3}\cdot {t}^{6}\cdot {t}^{5}[/latex], [latex]{\left(\frac{2}{y}\right)}^{5}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}={\left(-2\right)}^{14 - 9}={\left(-2\right)}^{5}[/latex], [latex]\frac{{t}^{23}}{{t}^{15}}={t}^{23 - 15}={t}^{8}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}={\left(z\sqrt{2}\right)}^{5 - 1}={\left(z\sqrt{2}\right)}^{4}[/latex], [latex]\frac{{\left(-3\right)}^{6}}{-3}[/latex], [latex]\frac{{\left(e{f}^{2}\right)}^{5}}{{\left(e{f}^{2}\right)}^{3}}[/latex], [latex]{\left(e{f}^{2}\right)}^{2}[/latex], [latex]{\left({x}^{2}\right)}^{7}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}[/latex], [latex]{\left({x}^{2}\right)}^{7}={x}^{2\cdot 7}={x}^{14}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}={\left(2t\right)}^{5\cdot 3}={\left(2t\right)}^{15}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}={\left(-3\right)}^{5\cdot 11}={\left(-3\right)}^{55}[/latex], [latex]{\left({\left(3y\right)}^{8}\right)}^{3}[/latex], [latex]{\left({t}^{5}\right)}^{7}[/latex], [latex]{\left({\left(-g\right)}^{4}\right)}^{4}[/latex], [latex]\frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}[/latex], [latex]\frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}[/latex], [latex]\begin{array}\text{ }\frac{c^{3}}{c^{3}} \hfill& =c^{3-3} \\ \hfill& =c^{0} \\ \hfill& =1\end{array}[/latex], [latex]\begin{array}{ccc}\hfill \frac{-3{x}^{5}}{{x}^{5}}& =& -3\cdot \frac{{x}^{5}}{{x}^{5}}\hfill \\ & =& -3\cdot {x}^{5 - 5}\hfill \\ & =& -3\cdot {x}^{0}\hfill \\ & =& -3\cdot 1\hfill \\ & =& -3\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}& =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{1+3}}\hfill & \text{Use the product rule in the denominator}.\hfill \\ & =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{4}}\hfill & \text{Simplify}.\hfill \\ & =& {\left({j}^{2}k\right)}^{4 - 4}\hfill & \text{Use the quotient rule}.\hfill \\ & =& {\left({j}^{2}k\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1& \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}& =& 5{\left(r{s}^{2}\right)}^{2 - 2}\hfill & \text{Use the quotient rule}.\hfill \\ & =& 5{\left(r{s}^{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 5\cdot 1\hfill & \text{Use the zero exponent rule}.\hfill \\ & =& 5\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\frac{{\left(d{e}^{2}\right)}^{11}}{2{\left(d{e}^{2}\right)}^{11}}[/latex], [latex]\frac{{w}^{4}\cdot {w}^{2}}{{w}^{6}}[/latex], [latex]\frac{{t}^{3}\cdot {t}^{4}}{{t}^{2}\cdot {t}^{5}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}={\theta }^{3 - 10}={\theta }^{-7}=\frac{1}{{\theta }^{7}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}=\frac{{z}^{2+1}}{{z}^{4}}=\frac{{z}^{3}}{{z}^{4}}={z}^{3 - 4}={z}^{-1}=\frac{1}{z}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}={\left(-5{t}^{3}\right)}^{4 - 8}={\left(-5{t}^{3}\right)}^{-4}=\frac{1}{{\left(-5{t}^{3}\right)}^{4}}[/latex], [latex]\frac{{\left(-3t\right)}^{2}}{{\left(-3t\right)}^{8}}[/latex], [latex]\frac{{f}^{47}}{{f}^{49}\cdot f}[/latex], [latex]\frac{1}{{\left(-3t\right)}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}[/latex], [latex]{b}^{2}\cdot {b}^{-8}={b}^{2 - 8}={b}^{-6}=\frac{1}{{b}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}={\left(-x\right)}^{5 - 5}={\left(-x\right)}^{0}=1[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}=\frac{{\left(-7z\right)}^{1}}{{\left(-7z\right)}^{5}}={\left(-7z\right)}^{1 - 5}={\left(-7z\right)}^{-4}=\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]\frac{{25}^{12}}{{25}^{13}}[/latex], [latex]{t}^{-5}=\frac{1}{{t}^{5}}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}={\left(a\right)}^{3}\cdot {\left({b}^{2}\right)}^{3}={a}^{1\cdot 3}\cdot {b}^{2\cdot 3}={a}^{3}{b}^{6}[/latex], [latex]2{t}^{15}={\left(2\right)}^{15}\cdot {\left(t\right)}^{15}={2}^{15}{t}^{15}=32,768{t}^{15}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}={\left(-2\right)}^{3}\cdot {\left({w}^{3}\right)}^{3}=-8\cdot {w}^{3\cdot 3}=-8{w}^{9}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}=\frac{1}{{\left(-7\right)}^{4}\cdot {\left(z\right)}^{4}}=\frac{1}{2,401{z}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}={\left({e}^{-2}\right)}^{7}\cdot {\left({f}^{2}\right)}^{7}={e}^{-2\cdot 7}\cdot {f}^{2\cdot 7}={e}^{-14}{f}^{14}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]{\left({g}^{2}{h}^{3}\right)}^{5}[/latex], [latex]{\left(-3{y}^{5}\right)}^{3}[/latex], [latex]\frac{1}{{\left({a}^{6}{b}^{7}\right)}^{3}}[/latex], [latex]{\left({r}^{3}{s}^{-2}\right)}^{4}[/latex], [latex]\frac{1}{{a}^{18}{b}^{21}}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}[/latex], [latex]{\left(\frac{-1}{{t}^{2}}\right)}^{27}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}=\frac{{\left(4\right)}^{3}}{{\left({z}^{11}\right)}^{3}}=\frac{64}{{z}^{11\cdot 3}}=\frac{64}{{z}^{33}}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}=\frac{{\left(p\right)}^{6}}{{\left({q}^{3}\right)}^{6}}=\frac{{p}^{1\cdot 6}}{{q}^{3\cdot 6}}=\frac{{p}^{6}}{{q}^{18}}[/latex], [latex]{\\left(\frac{-1}{{t}^{2}}\\right)}^{27}=\frac{{\\left(-1\\right)}^{27}}{{\\left({t}^{2}\\right)}^{27}}=\frac{-1}{{t}^{2\cdot 27}}=\frac{-1}{{t}^{54}}=-\frac{1}{{t}^{54}}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}={\left(\frac{{j}^{3}}{{k}^{2}}\right)}^{4}=\frac{{\left({j}^{3}\right)}^{4}}{{\left({k}^{2}\right)}^{4}}=\frac{{j}^{3\cdot 4}}{{k}^{2\cdot 4}}=\frac{{j}^{12}}{{k}^{8}}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}={\left(\frac{1}{{m}^{2}{n}^{2}}\right)}^{3}=\frac{{\left(1\right)}^{3}}{{\left({m}^{2}{n}^{2}\right)}^{3}}=\frac{1}{{\left({m}^{2}\right)}^{3}{\left({n}^{2}\right)}^{3}}=\frac{1}{{m}^{2\cdot 3}\cdot {n}^{2\cdot 3}}=\frac{1}{{m}^{6}{n}^{6}}[/latex], [latex]{\left(\frac{{b}^{5}}{c}\right)}^{3}[/latex], [latex]{\left(\frac{5}{{u}^{8}}\right)}^{4}[/latex], [latex]{\left(\frac{-1}{{w}^{3}}\right)}^{35}[/latex], [latex]{\left({p}^{-4}{q}^{3}\right)}^{8}[/latex], [latex]{\left({c}^{-5}{d}^{-3}\right)}^{4}[/latex], [latex]\frac{1}{{c}^{20}{d}^{12}}[/latex], [latex]{\left(6{m}^{2}{n}^{-1}\right)}^{3}[/latex], [latex]{17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}[/latex], [latex]{\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}[/latex], [latex]\left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)[/latex], [latex]{\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}[/latex], [latex]\frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}[/latex], [latex]\begin{array}{cccc}\hfill {\left(6{m}^{2}{n}^{-1}\right)}^{3}& =& {\left(6\right)}^{3}{\left({m}^{2}\right)}^{3}{\left({n}^{-1}\right)}^{3}\hfill & \text{The power of a product rule}\hfill \\ & =& {6}^{3}{m}^{2\cdot 3}{n}^{-1\cdot 3}\hfill & \text{The power rule}\hfill \\ & =& \text{ }216{m}^{6}{n}^{-3}\hfill & \text{Simplify}.\hfill \\ & =& \frac{216{m}^{6}}{{n}^{3}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}& =& {17}^{5 - 4-3}\hfill & \text{The product rule}\hfill \\ & =& {17}^{-2}\hfill & \text{Simplify}.\hfill \\ & =& \frac{1}{{17}^{2}}\text{ or }\frac{1}{289}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}& =& \frac{{\left({u}^{-1}v\right)}^{2}}{{\left({v}^{-1}\right)}^{2}}\hfill & \text{The power of a quotient rule}\hfill \\ & =& \frac{{u}^{-2}{v}^{2}}{{v}^{-2}}\hfill & \text{The power of a product rule}\hfill \\ & =& {u}^{-2}{v}^{2-\left(-2\right)}& \text{The quotient rule}\hfill \\ & =& {u}^{-2}{v}^{4}\hfill & \text{Simplify}.\hfill \\ & =& \frac{{v}^{4}}{{u}^{2}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)& =& -2\cdot 5\cdot {a}^{3}\cdot {a}^{-2}\cdot {b}^{-1}\cdot {b}^{2}\hfill & \text{Commutative and associative laws of multiplication}\hfill \\ & =& -10\cdot {a}^{3 - 2}\cdot {b}^{-1+2}\hfill & \text{The product rule}\hfill \\ & =& -10ab\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}& =& {\left({x}^{2}\sqrt{2}\right)}^{4 - 4}\hfill & \text{The product rule}\hfill \\ & =& \text{ }{\left({x}^{2}\sqrt{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1\hfill & \text{The zero exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}& =& \frac{{\left(3\right)}^{5}\cdot {\left({w}^{2}\right)}^{5}}{{\left(6\right)}^{2}\cdot {\left({w}^{-2}\right)}^{2}}\hfill & \text{The power of a product rule}\hfill \\ & =& \frac{{3}^{5}{w}^{2\cdot 5}}{{6}^{2}{w}^{-2\cdot 2}}\hfill & \text{The power rule}\hfill \\ & =& \frac{243{w}^{10}}{36{w}^{-4}}\hfill & \text{Simplify}.\hfill \\ & =& \frac{27{w}^{10-\left(-4\right)}}{4}\hfill & \text{The quotient rule and reduce fraction}\hfill \\ & =& \frac{27{w}^{14}}{4}\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]{\left(2u{v}^{-2}\right)}^{-3}[/latex], [latex]{x}^{8}\cdot {x}^{-12}\cdot x[/latex], [latex]{\left(\frac{{e}^{2}{f}^{-3}}{{f}^{-1}}\right)}^{2}[/latex], [latex]\left(9{r}^{-5}{s}^{3}\right)\left(3{r}^{6}{s}^{-4}\right)[/latex], [latex]{\left(\frac{4}{9}t{w}^{-2}\right)}^{-3}{\left(\frac{4}{9}t{w}^{-2}\right)}^{3}[/latex], [latex]\frac{{\left(2{h}^{2}k\right)}^{4}}{{\left(7{h}^{-1}{k}^{2}\right)}^{2}}[/latex].